Discriminating brain activity from task-related artifacts in functional MRI: Fractal scaling analysis simulation and application
نویسندگان
چکیده
Functional magnetic resonance imaging (fMRI) signal changes can be separated from background noise by various processing algorithms, including the well-known deconvolution method. However, discriminating signal changes due to task-related brain activities from those due to task-related head motion or other artifacts correlated in time to the task has been little addressed. We examine whether three exploratory fractal scaling analyses correctly classify these possibilities by capturing temporal self-similarity; namely, fluctuation analysis, wavelet multi-resolution analysis, and detrended fluctuation analysis (DFA). We specifically evaluate whether these fractal analytic methods can be effective and reliable in discriminating activations from artifacts. DFA is indeed robust for such classification. Brain activation maps derived by DFA are similar, but not identical, to maps derived by deconvolution. Deconvolution explicitly utilizes task timing to extract the signals whereas DFA does not, so these methods reveal somewhat different information from the data. DFA is better than deconvolution for distinguishing fMRI activations from task-related artifacts, although a combination of these approaches is superior to either one taken alone. We also present a method for estimating noise levels in fMRI data, validated with numerical simulations suggesting that Birn's model is effective for simulating fMRI signals. Simulations further corroborate that DFA is excellent at discriminating signal changes due to task-related brain activities from those due to task-related artifacts, under a range of conditions.
منابع مشابه
Analysis of Memory-Related Brain Activation Maps in Sleep-Depriveation using Functional Magnetic Resonance Imaging
Background and purpose: Insomnia is a common sleep disorder with negative consequences such as decreased quality of life. In this study, the effect of sleep deprivation on memory in both young and older adults was investigated using functional magnetic resonance imaging (fMRI). Materials and methods: In this retrospective study, fMRI data of 40 healthy subjects (17 young and 23 older people) w...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملTheory, Simulation and Compensation of Physiological Motion Artifacts in Functional MRI
Mapping the location of brain activity is a new and exciting application of magnetic resonance imaging (MRI). This application area has already seen the use of a variety of magnetic resonance image acquisition methods, including spin-warp, spiral k-space, and echo-planar imaging, each of which has its own advantages and disadvantages. In this paper, we examine physiological sources of image art...
متن کاملScale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task
Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently, scaling properties were shown to fluctuate across brain networks and to be modulated between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory, decreases under task in activating and deactivat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 40 1 شماره
صفحات -
تاریخ انتشار 2008